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 1984, Vol. 15, No. 1, 35-49

 MATHEMATICAL THINKING:
 THE STRUGGLE FOR MEANING

 LEONE BURTON, Avery Hill College, London

 This paper argues that mathematical thinking is not thinking about the subject matter
 of mathematics but a style of thinking that is a function of particular operations,
 processes, and dynamics recognizably mathematical. It further suggests that because
 mathematical thinking becomes confused with thinking about mathematics, there has
 been little success in separating process from content in the classroom presentation of the
 subject. A descriptive model of mathematical thinking is presented and then used to
 provide a practical response to the questions, Can mathematical thinking be taught? In
 what ways? The teacher is encouraged to recognize both what constitutes mathematical
 thinking, whether in the mathematics class or some other, and what conditions are
 necessary to foster it.

 Most schools assume that by teaching mathematics compulsorily and over
 a number of years they are providing the conditions through which pupils will
 develop their mathematical thinking. This assumption, usually unchallenged,
 rests on a view of mathematics as a logically developed discipline, together
 with the expectation that the logic will spill over and be absorbed by the
 pupils into all aspects of their lives as they pursue a study of the content of
 mathematics, for example, in learning number, geometry, trigonometry, or
 algebra. Experience, however, tells a very different story. Few pupils leave the
 school system with mathematical success as measured by examinations, and
 those who do consistently surprise their university tutors by their lack of
 facility in thinking mathematically. Many mathematics educators articulate
 the problem in terms of content versus process. Certainly an inordinate
 amount of time in schools is spent teaching mathematical content and tech-
 niques while the process, the means through which mathematics is derived,
 receives little attention. But even where attempts have been made to introduce
 an emphasis on process into the curriculum, little impact is visible. The reason
 is partly that once process is enshrined in texts, it becomes content. But, also,
 exploring process is not very profitable when teachers do not understand
 the kinds of thinking from which the process springs.

 In this paper I propose addressing the following questions:

 "* What is mathematical thinking?
 "* What does it have to do with mathematical content?

 "* Can it be taught?

 First, a model of mathematical thinking is outlined in terms of operations,
 processes, and dynamics. Researchable questions thrown up by such a model
 are identified. Next, an example is used to explore the distinction between an
 approach to mathematics dictated by the model and a conventional "mathe-
 matical" presentation. Finally, the research basis of the model is used to
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 36 Mathematical Thinking

 justify encouraging teachers to adopt this approach in order to stimulate and
 use their pupils' mathematical thinking.
 The following axiom underpins the approach:

 Thinking is the means used by humans to improve their understand-
 ing of, and exert some control over, their environment.

 It follows from the axiom that as individuals increase their awareness of their

 thinking "field," so they extend their range of possible choices.

 WHAT IS MATHEMATICAL THINKING?

 I draw a clear distinction between mathematical thinking and the body of
 knowledge (i.e., content and techniques) described as mathematics. The style
 of thinking labeled mathematical is pertinent whatever the content to which it
 is being applied. It is mathematical not because it is thinking about mathemat-
 ics but because the operations on which it relies are mathematical opera-
 tions. Its field of application is general. Like the scientific method, which
 does not necessarily pertain to science alone, mathematical thinking is used
 when tackling appropriate problems in any context area, although ques-
 tions of a mathematical nature might more readily expose such thinking. A
 problem is appropriate to mathematical thinking when it provokes or re-
 sponds to the use of the components identified below. It has been argued
 that mathematical thinking is the means by which infants first organize the
 information they gather through their senses in order to learn from their
 environment and, in particular, in order to learn to speak (Gattegno, 1973).

 If thinking is a way of improving understanding and extending control over
 the environment, mathematical thinking uses particular means to do this,
 means that can be recognized as arising from or pertaining to the study of
 mathematics. These means will be described as the operations, processes, and
 dynamics of mathematical thinking.

 The Operations of Mathematical Thinking

 What do we think about? An idea, an observation, a happening-any event
 can provide a stimulus to begin thinking. Such events are the elements on
 which mathematical thinking operates. The thinking requires that elements
 be acted on in some way, and the methods, or operations, used are all
 identifiably mathematical (Figure 1). For example, when faced with a group
 of objects, a child might think about how many. The mathematical nature of
 this thinking would be recognized by all teachers as enumeration. However,
 just as mathematical is the thinking necessary for repetition, or iteration,
 since it is dependent on pattern recognition and continuation. Repetition can
 often be used to great effect, for example, in Bach's preludes or in the
 drawings of Escher (Hofstadter, 1979).

 The study of relationships is central to doing mathematics. Elements can be
 related in many different ways to themselves or to other elements, for exam-
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 iterated (e.g., a, a2, a3,. ..)
 enumerated cardinally (e.g., 1, 2, 3, .. .)

 ordinally (e.g., 1st, 2nd, 3rd,. ..)
 related by ordering

 elements making a correspondence
 equivalence
 inverse, converse

 transformed by combination
 substitution

 Figure 1. Mathematical thinking as operations on elements.

 ple, by ordering, making correspondences, or forming equivalence classes.
 Think of "Goldilocks and the Three Bears," in which ordering (Daddy Bear,
 Mummy Bear, and Baby Bear), correspondences (bears matched to big bed,
 middle-sized bed, and baby bed, etc.), and equivalence classes (Daddy Bear
 has the big bowl of porridge, the big bowl is by the big chair, so Daddy Bear
 has the big chair, etc.) are central to the story.

 Combining elements or substituting one for another can transform them
 from their current state into a new state. Indeed, many of the plots of
 Shakespeare's comedies depend on just such transformations. The examples
 above provide justification for the earlier assertion that mathematical think-
 ing is independent of the content area in which it is being applied. The
 operations of mathematical thinking are necessary for understanding and
 using the ideas.

 More recognizable mathematical operations are, of course, pertinent to
 mathematical thinking. When weighing ingredients to make a cake, for
 example, the cook adds and subtracts quantities before arriving at a satisfac-
 tory amount. Most teachers are happy to acknowledge the mathematical
 nature of these actions. Yet, the task demands the operations of mathematical
 thought as well as the mathematical actions. A transformation must be made
 from a current state (too much flour, for example) to a new state (the correct
 amount). It is effected by subtracting, which can be effectively used because it
 is supported by the structure of thought that permits continuous transforma-
 tion.

 Small-scale observations of children from nursery age (3 years) upward
 have yielded evidence of their use of mathematical thinking operations. The
 next step is to codify these observations, identifying separately that behavior
 resulting from mathematical thinking and that resulting from the application
 of mathematical knowledge or skills. For example, evidence of a very young
 child's ordering, on the one hand, would be taken as an action resulting from
 mathematical thinking. Counting, on the other hand, would depend on
 familiarity with the use of numbers.

 The Processes of Mathematical Thinking

 Four processes can be shown to be central to mathematical activity and yet,

This content downloaded from 
����������209.232.145.164 on Tue, 30 May 2023 16:29:26 +00:00����������� 

All use subject to https://about.jstor.org/terms



 38 Mathematical Thinking

 as before, to have general application. The four processes are (a) specializing,
 (b) conjecturing, (c) generalizing, and (d) convincing.

 Specializing. When one is faced with a question or problem, a powerful
 way to explore its meaning is by examining particular examples. Such spe-
 cializing is the key to an inductive approach to learning and is observed as
 natural to the learning of children. Each example provides the opportunity
 for manipulating elements that are concrete in the child's thinking, whether
 they are physical manifestations or ideas.

 Conjecturing. When enough such examples have been examined, conjec-
 turing about the relationship that connects them happens almost automati-
 cally. Through conjecturing, a sense of any underlying pattern is explored,
 expressed, and then substantiated.

 Generalizing. The recognition of pattern or regularity provokes the state-
 ment of a generalization. Such statements appear to be the building blocks
 used by learners to create order and meaning out of an overwhelming quan-
 tity of sense data, and it is on such generalizations that much behavior
 depends.

 Convincing. To become robust, a generalization must be tested until it is
 convincing. First the thinker convinces himself or herself and then the world
 outside. The convincing process is the means by which a generalization moves
 from being personal to being public. A picture of the deductive approach is
 obtained by inverting the order of the processes. Beginning with a generaliza-
 tion, one explores the web of conjectures it provokes and tests them against
 particular specializations.

 Inductive learning: SPECIALIZING -- CONJECTURING --
 GENERALIZING

 Deductive learning: GENERALIZING --* CONJECTURING -*
 SPECIALIZING

 Convincing, in both the inductive and the deductive cases, is not simply a
 matter of verification. To underline this claim, it is valuable to introduce the
 notion of a monitor, derived from the work of Schoenfeld (1983). The
 monitor represents an internal enemy who pushes past complacent ac-
 ceptance, doubting and probing an argument, querying assumptions, and
 negotiating meanings toward the best possible proof in the circumstances.
 The notion of proof is again a mathematical notion and one that distinguishes
 mathematical from scientific activity. A proof is an argument deduced from a
 set of axioms and independent of empirical trials. For a proof to be acceptable
 the "logic" of its deduction must convince an external "enemy," usually the
 community at which it is aimed. Proofs can thus be seen as attempts at
 constructing convincing arguments; they are neither universal nor final.
 What a proof does and does not prove can, indeed should, be investigated
 (Bloor, 1976; Lakatos, 1976).
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 Leone Burton 39

 Two areas for investigation are present here. One could be labeled "What
 does a proof prove?" Although clearly derivable from the work of Lakatos, it
 can be fruitfully explored with young learners. The approach "convince me"
 is both more open to use with younger children and more attractive to them
 than the rigorously mathematical proving process often derived without
 earlier experience of this type. The effects on their later adoption of the
 proving process should be researched. The second area is the amenability of
 young children to the proving process, which has been investigated by Bell
 (1976) and Balacheff (1981) and which requires further attention from
 researchers.

 The Dynamics of Mathematical Thinking

 A helical extension of the framework originally offered by Bruner, Good-
 now, and Austin (1956) has been proposed by Mason (Mason, Burton, &
 Stacey, 1982). In such a representation, the dynamics of mathematical think-
 ing are displayed by movement around or between an unspecified number of
 loops, each new loop building on the understandings and awarenesses
 achieved in traversing previous loops (see Figure 2).

 pa mtten gI)
 sybIi2- ,

 "Getting a sense
 of pattern

 anipulatin  Articulating-tha
 pattern ,r
 symbolically

 Getting a sense
 of pattern

 Maiplating 41%*?g

 Figure 2. The dynamics of mathematical thinking. From Thinking Mathematically (p. 181)
 by J. Mason, L. Burton, and K. Stacey, 1982, London: Addison-Wesley. Copyright 1982 by
 Addison-Wesley Publishers Limited. Reprinted by permission.
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 40 Mathematical Thinking

 The process is initiated by encountering an element with enough surprise or
 curiosity to impel exploration of it by manipulating. The element may be a
 physical object, a diagram, an idea, or a symbol, but it must be encountered at
 a level that is concrete, confidence inspiring, and amenable to interpretation.
 A perceived gap between what is expected from the manipulation and what
 actually happens provokes tension that provides a force to keep the process
 going until some sense of pattern or connectedness releases the tension into
 achievement, wonder, pleasure, or further surprise or curiosity that drives the
 process on. Although the sense of what is happening remains vague, further
 manipulating is required until the sense can be expressed in an articulation.
 Articulations do not have to be verbal. They might well be in concrete,

 diagrammatic, or symbolic form, but they will crystallize the essence underly-
 ing the sense achieved as a result of the manipulations. An achieved articula-
 tion immediately becomes available for new manipulating; hence the wrap-
 around of the helix. Each successive loop therefore assumes that the thinking
 is more complex, since the new elements being manipulated are the achieved
 articulations of the previous loop. This complexity might be obtained from
 increasing generality or from increasing refinements. The connectedness of
 the loops always permits the thinker to have the opportunity to track back to
 previous levels and recreate articulations that might have become unstable.
 The new is mastered by reference back to what has been previously mastered
 either by demanding particular instances (specializing again) or by providing
 ones that test against an articulation. The process is going on continually-no
 doubt you used it when reading the paragraph above by relating specific
 instances from your own experience to see how they fit the generalities being
 expressed.

 The development of ideas of number in children provides a good example.
 Early in life, with growing muscle coordination, the child manipulates objects
 with increasing confidence. There follows a developing sense of oneness,
 twoness, and so on, together with a feeling for the idea of matching, and later,
 one-one matching. After much exposure, oneness and twoness become asso-
 ciated with the words one and two, and later still, a written form of 1 and 2
 are recognized. Long before the written symbols are concrete, the verbal
 forms begin to be combined and used in thinking about, for example, situa-
 tions of more or less than (e.g., Have we more plates than people? Have we
 enough cups?) Later still, verbal articulations become concretely manipulable
 as symbolic statements, such as 7 is 3 more than 4. These are the foundations
 of arithmetic, but articulation in written form, 7 = 3 + 4, must again wait for
 the development of an underlying grasp or sense of what is meant, preferably
 through the verbal constructions that are becoming part of the child's au-
 tomatic, meaningful language. The cycle continues through multiplication
 and division, fractions and decimals, negative numbers, square roots, powers,
 logarithms, sines and cosines, and so on. In parallel, the possibility of repre-
 senting a range of values by letters becomes increasingly concrete, and the
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 shift to generalizing that is represented mathematically by algebraic activities
 is supported by images such as graphs and coordinates and through the
 experience of number games like Think of a Number. The cycle continues
 into the highest realms of number abstraction. At any point, if faced with a
 lapse of understanding, confusion, or total bafflement, the sensible action is
 to backtrack down the helix, appealing to a sense of pattern achieved from
 further concrete examples. Manipulating particular examples, that is, spe-
 cializing, with an eye to discerning meaning at the point of difficulty, is then
 an attempt to grip the helix firmly and climb back up on more reliable
 foundations.

 Although manipulating, getting a sense of pattern, and articulating de-
 scribe the cognitive activities propelling mathematical thinking, the affective
 components also demand attention. The ebb and flow at the cognitive level is
 charted by affective responses that can be observed as passing through three
 phases: entry, attack, and review.

 As meanings are sought, commitment is tentatively aroused. This phase of
 engaging is described as entry. Surprise, curiosity, or tension creates an
 affective need. To resolve this need requires further exploration that, in turn,
 satisfies the cognitive need to get a sense of the underlying pattern. One
 explanation of this struggle for meaning describes it in terms of a basic human
 need to resolve "cognitive conflict" (Bruner et al., 1966). However, there are
 two possible affective means of dealing with such conflict. One is to engage
 further and attack the cause of the conflict. The other is to withdraw with a

 sense of failure and incapacity. Moving from the entry phase to attack and
 engaging further is likely only in a person who is already aware of enough
 success from previous attacks for his or her confidence to cope with the
 possibility of failure on this occasion. It is not cognitive input so much as the
 feeling accompanying that input that dictates whether thinking engages or
 subsides. This interdependence of the cognitive and the affective is con-
 sequently central to learning. A sense of achievement that accompanies an
 articulation provides the momentum to look back and check the achieved
 generality against the original state and the experience in attack and to look
 forward from the achieved generality toward further questions that it
 provokes. This opportunity for reflection and extension is described as re-
 view (see Figure 3).

 The helix provides a representation of mathematical thinking that under-
 lines the interconnectedness of cognition and emotion. Although they are
 interlocked, an observer can distinguish distinct behavior and emotional
 states. Confidence results from manipulating elements that are concrete to the
 thinker. It provides the momentum to move from entry to attack and to
 develop a sense of pattern out of the concrete specializations. Curiosity and
 tension sustain the attack to the point where an articulation is possible. The
 satisfaction of achievement fuels a review and the further need to place the
 achieved understanding in a wider context. Thus, the cycle continues. Blocks,
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 ENTRy
 REVIEW

 ATTACK

 SNTRY

 Figure 3. Affective phases in mathematical thinking.

 misunderstandings, or conjectures that fail under testing cause an oscillation
 within loops and across loops. The apparent linearity of the representation is
 not observed in practice, therefore.

 Again, considerable work remains to be done in identifying learner re-
 sponses appropriate to each phase of the loop. What kind of articulation can a
 teacher expect to hear from a child who has a well-established sense of
 counting numbers, say, or at a higher level, of the meaning of the trigonomet-
 ric functions? What behavior, verbal and nonverbal, indicates that the learner
 is still trying to establish that sense and requires further experience?

 WHAT DOES MATHEMATICAL THINKING

 HAVE TO DO WITH MATHEMATICS?

 The following question is the kind that might provoke both mathematical
 thinking and mathematics:

 At a warehouse I was informed that I would obtain 20% discount on my
 purchase but would have to pay 15 % sales tax. Which would be better for me
 to have calculated first, discount or tax? (Cf. Mason et al., 1982, p. 1).

 The following is an annotated record of a person's response to this question.
 On hearing the question, the person made an entry conjecture:
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 I would expect to benefit from obtaining discount first, then adding the tax to
 a smaller price.

 It was followed by a specialization:
 I'll try it for an item priced ?100. Discount first means subtracting 20% of
 ?100, which gives ?80. Adding 15% tax, which is ?12, gives ?92 as the final
 price. The other way round is tax first; 15 % of ?1 00 added on is ?115. Now
 20% discount means subtracting ?23. Result, ?92. That's not what I ex-
 pected! The order of calculation seems to make no difference.

 Surprise fueled attack and a further question leading to another specializa-
 tion.

 I wonder if that is so for a differently priced article? Say ?65. Tax first this
 time, ?78. Now discount, ?62.40. Discount first, ?52. Then add tax, ?62.40.
 Aha! So it makes no difference.

 A confirmed conjecture leads to the need for convincing.

 Now how to show that for any price. If the article costs ?A: Tax first means
 ?A + 15%A = 115%A.

 Less discount leaves 80% of 115 %A.
 Discount first gives 80%.
 Tax next 115 % of 80%A.
 Now, multiplication is unaffected by order, so these are the same.

 Finally, review provokes a new question and would lead to another entry.

 Oops! Wait a minute. I've only shown that the order of calculation makes no
 difference if the discount is 20% and the tax 15 %. Would it still make no
 difference if the discount were 17% and the tax 8 %, or indeed, anything else?

 The example displays all four processes of mathematical thinking and links
 them to the helix. In order to specialize, the person manipulated particular
 elements (numbers) that were concrete for her in order to get a sense of what
 was going on and to generate the articulation of a generalization. The entry
 was tentative, but surprise quickly fueled an attack on the question that
 culminated in a resolution that displayed generality. She used the tools of
 algebra to help convince herself that the generalization was robust.

 The processes by which this resolution was obtained, made more obvious
 by the use of the helix of mathematical thinking, were independent of the
 mathematical content. The mathematics demanded by the question was some
 elementary manipulation of numbers, particularly percentages, followed by
 the use of algebra.

 Algebra was a powerful tool for convincing in the example because of the
 kind of question, but in an example not overtly mathematical other tools
 would also have the power to convince. If you have ever tried to shift a heavy
 item of furniture around a corner, you will be aware of different means to
 convince yourself of the conditions under which it can or cannot be done,
 including measuring, diagramming, and modeling.
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 44 Mathematical Thinking

 The resolution also demonstrates why mathematical thinking does not
 automatically emerge from a study of mathematics. A model answer would
 have suppressed all evidence of mathematical thinking and presented only the
 abstract application of the algebraic tools. Further, such a formal treatment
 removes examples of the negotiation of meaning (e.g., through specializing),
 of the recognition of constraining factors (e.g., that generality of price does
 not automatically imply generality of percentage changes in price), and, in
 particular, of the feelings that were evoked. The mathematics is presented as a
 closed manipulation of techniques, whereas the mathematical thinking dem-
 onstrates open inquiry. An over-conscientious concentration on the content
 of mathematics would therefore be expected to obstruct the development of
 the kind of awareness on which mathematical thinking is based.
 Every example calls out some tools of mathematical thinking and of

 mathematics. A choice of such examples, and the opportunity to explore
 them, provides a rich display of mathematical thinking as well as a justifica-
 tion for the use of mathematics. Therefore I subscribe to the assertion that

 "the reason why we should study mathematics is because it educates... a
 third eye ... capable of scrutinizing relationships per se ... and capable of
 indefinite extension" (Gattegno, 1963, p. 98).

 CAN MATHEMATICAL THINKING BE TAUGHT?

 A PROCESS OF ENRICHMENT

 The discussion above has underlined the relationship between mathemat-
 ical thinking and learning, and between learning and expanding awareness. If
 mathematical thinking is a natural means by which we classify, combine,
 relate, and transform information, then children bring an experience of these
 mathematical thinking operations with them when first they come to school,
 and such experience is available if teachers know of it and how to use it.
 Learning is then not simply a function of input, or practice, but depends on a
 conscious reflection on, at the same time, what is being done and why. The
 quality of the pupils' mathematical thinking and more especially of their
 responses to mathematics can be affected by their experiences. Not surpris-
 ingly, the quality can deteriorate as well as be enriched if only because of the
 interlocking of cognitive and affective experience (Buxton, 1981).

 A number of studies have been undertaken in the United Kingdom using
 the above framework (Burton, 1980b; see also the 1982 Open University
 course EM235 Developing Mathematical Thinking). The major difference
 between these studies and the usual approach to generating problem-solving
 processes in the classroom has been their emphasis on the need to make the
 processes overt and to concentrate on them so that they become the focus of
 the learner's attention and their power to inform and direct an inquiry can be
 recognized.

 The Skills and Procedures of Mathematical Problem Solving Project (Bur-
 ton, 1980b) concentrated on children between the ages of 9 and 13 years.
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 Although the children were of mixed abilities, both their confidence and their
 capacity consciously to scan and choose an appropriate strategy were posi-
 tively affected by their participation in the project. Particularly noticeable
 was the degree to which they adopted a wide range of techniques for repre-
 senting problem information as part of their entry and attack behavior.
 Abundant evidence was available of the role of such representations in
 providing a necessary basis for manipulation toward a sense of pattern in the
 children's exploration of the problems (in this respect see, e.g., Burton,
 1980a). Such studies support a philosophy and methodology of teaching
 quite distinct from those normally observed. Certainly the analysis indicates
 an approach that might be termed "child-centered," but it is not undertaken
 to see how the child fits a predetermined model of development or displays
 expected behavior. Putting children at the center of their own learning accepts
 that they come to the classroom equipped with a vast array of tools that have
 already served them well and that they can continue to use and refine. Respect
 for the power of those tools leads to the derivation of a curriculum that
 requires their application. Thus, since the teacher knows that the child is
 already an accomplished classifier, it makes sense to let him or her build
 confidently on that skill and to provide the opportunities so to do. Equally,
 since the child has effectively used the ordering operation in preschool learn-
 ing, it is consistent to use that operation in the kinds of experiences offered in
 school. But it is only as one becomes aware of one's thinking tools that one
 will exercise their power. As long as they are not brought to the conscious
 level, examined, and discussed, their application will remain unrecognized.
 Offering overt opportunities for specializing, generalizing, conjecturing, and
 convincing enables the thinker to encounter aspects of his or her own thinking
 more deeply. Being aware of the operations of mathematical thinking helps
 both teachers and pupils to recognize their own power in thinking about
 mathematical experiences. A sensitive appreciation of the dynamics of math-
 ematical thinking draws attention to the decisive role of feelings in thinking
 and to the need to interlock action with thought and expression.

 Capturing the Feelings in Words

 Pupils need tools to help them structure their responses so that they can
 build their reflective powers. Further, they need encouragement to capture
 their feelings at the moment of expression. Consequently, students of all ages
 have been encouraged to develop the use of particular words that reflect their
 responses as they tackle questions (Floyd, 1982; Mason et al., 1982). These
 words can then act as triggers to further thought as well as providing mental
 markers. The most powerful of such words are STUCK! and AHA! The
 action of writing STUCK! seems to release the energy that has been blocked
 by the state of being stuck. Instead of being a plaintive cry for help, it jogs the
 thinker into the use of the processes of specializing, conjecturing, generaliz-
 ing, and convincing. Associated with STUCK! are questions such as "What
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 do I KNOW?" "What do I WANT?" and "What can I INTRODUCE?"

 which are all appropriate to the type of activity typical of entry. During the
 attack phase, STUCK! calls out TRY, MAYBE, BUT WHY? When reviewing
 what one has done, the words suggested are CHECK, REFLECT, and EX-
 TEND. Without in any way insisting on a particular choice of words-in-
 deed, the more personal the choice the more likely they are to prove use-
 ful-Mason and his colleagues have found that the action of writing such
 annotations both facilitates results and stimulates an awareness of mathemat-

 ical thinking. Introducing the writing of such words as STUCK! AHA!
 REFLECT! as a natural part of classroom activity seems consistent with the
 purpose of the classroom. In particular, it emphasizes that getting stuck is a
 natural phenomenon that is conducive to further learning. The derivation of
 the means by which "STUCK!" can be undone and turned into "AHA!" fixes
 the experience in one's consciousness, enriched by a strong sense of ac-
 complishment and confidence.

 Developing a Questioning Atmosphere

 "The answer is 42. What was the question?" comes from a satirical radio
 and television program on the British Broadcasting Corporation called "A
 Hitchhiker's Guide to the Galaxy." It is easy to draw an analogy with much of
 what is presented to students in formal classrooms. Small children have no
 shortage of questions of their own, but the formality of the curriculum rapidly
 represses them. Pupils end up instead with curriculum answers to questions
 that they do not possess. As demonstrated in the sample resolution above,
 emphasizing the personal enrichment of asking questions and then examining
 the implications of such question asking can become a natural way of expos-
 ing students' mathematical thinking. They can notice and wonder at the
 unexpected and the changing, challenge the hidden assumptions in the com-
 monplace and accepted. Most of all, they can conjecture explanations for
 what they observe, learn to test their conjectures, and reflect on what they
 have uncovered. One of the great advantages of the classroom is that it can
 provide a group experience in which conflicting conjectures articulated by
 different members of the group can create the spark necessary to shift the
 thinking process from entry to attack. In a mutually supportive atmosphere,
 the awareness of a gap that opens between where I think I am and where
 others appear to be-between what I perceive compared with others-is one
 of the ways in which tension can arise and mathematical thinking can be
 generated. Such gaps do occur inside individuals but can more frequently be
 induced when a group works together. Where the gap is knowledge based,
 insecurity and panic can develop. Where the gap represents the distance
 between different conjectures, the possibility exists for the testing of those
 conjectures, for example by specializing, and for the negotiation of meaning
 along the way. Hence the power of such techniques as synectics (Gordon,
 1961) and CoRT (de Bono, 1976) has been demonstrated when they are
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 applied to knowledge-based learning (e.g., Edwards & Baldauf, 1982), and to
 creativity in, for example, the use of "brainstorming" by the Creative Studies
 Course at the State University of New York at Buffalo (Parnes & Noller,
 1972-1973).

 An Example of the Approach

 Richard, aged four, carries his father's briefcase downstairs each evening in
 preparation for the next day. One evening, his mother puts a large quantity of
 coins into the briefcase for his father to bank the following day. Richard is
 unable to lift the briefcase. This, for Richard, is a problem that provokes
 investigation. When presented with this scenario, teachers in training respond
 by saying, "Explain to Richard that there is something heavy in the briefcase"
 or "Show Richard the heavy coins in the briefcase."

 Here is an alternative approach. First, pose the problem. Well, Richard,
 what has changed? Now, conjecture:

 "* Perhaps Richard has changed, that is, he is no longer strong enough to lift
 the briefcase.

 "* Perhaps the conditions surrounding the briefcase have changed, that is,
 the briefcase has become glued to the floor.

 "* Perhaps the briefcase itself has changed, that is, it is no longer the same
 briefcase, or something about it is no longer the same.

 Next, test each conjecture:

 "* Is Richard feeling ill?
 "* Is the floor different?

 "* Has Richard's father changed his briefcase?
 What remains? Something different about the briefcase. Let us then exam-

 ine the briefcase and its contents, starting with the briefcase empty, refilling it
 item by item, and testing each time. What does Richard find out?

 1. He can investigate his problem.
 2. He can conjecture and test his conjectures.
 3. He can construct an argument step by step.

 4. His curiosity can be fed in different ways.

 5. He can create his own resolution of the problem.

 6. Heaviness has meaning because of the process Richard undergoes to
 establish that meaning.

 The most gentle explanation, the most sensitive "showing," cannot encour-
 age Richard's mathematical thinking, and it kills his problem stone dead!

 CONCLUSION

 The key to recognizing and using mathematical thinking lies in creating an
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 atmosphere that builds confidence to question, challenge, and reflect. Behind
 such behavior is an acknowledgment of the need to:

 "* query assumptions

 "* negotiate meanings

 "* pose questions
 "* make conjectures

 "* search for justifying and falsifying arguments that convince

 "* check, modify, alter
 "* be self-critical

 "* be aware of different approaches

 "* be willing to shift, renegotiate, change direction

 Relevant teacher behavior to establish and maintain this kind of classroom

 atmosphere is reflected in the use of questions such as:

 "* Why do you think that?

 "* What do you notice?

 "* Is there another way?
 "* What if...?

 "* Can you convince a friend?

 "* Can you find a counterexample?

 Such experiences in the classroom can only increase the pupil's awareness.
 But awareness means more than that. It is the bridge that connects disparate
 areas of knowledge, information, experience, techniques, perception, and
 feeling to each other and to the world outside. And awareness operates on
 itself. By becoming aware of the existence and use of mathematical thinking,
 the child shifts content learning to the object rather than the subject of the
 curriculum. Increased awareness does not just happen: it must be fostered,
 tendered, and built on in a conscious way. The struggle for meaning is
 pursued, therefore, in an atmosphere supportive of the mathematical think-
 ing that will mediate that struggle. This requires a recognition by both
 teachers and those who are taught

 "* of the operations of mathematical thinking, which provide the tactics of
 the struggle;

 "* of specializing, generalizing, conjecturing, and convincing, which are the
 processes of the struggle;

 "* of the helix of mathematical thinking, which links the cognitive and the
 affective in the dynamics of the struggle.

 Accepting the implications of this model leads teachers and taught into a
 different relationship that not only encourages the development and use of
 mathematical thinking but gives direction to mathematics education. Sys-
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 tematic observation and recording of such changes by researchers will, I hope,
 provide evidence of the enrichment the changes bring to pupils' experience as
 well as support attempts to convince teachers of the validity of the approach.
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